2022考研数学复习:五个导数重点解析

2021-04-17 16:49点击次数:1374

    有些考生因为数学基础薄弱而失去了优势,考研数学复习和复习考研英语一样要找到正确的方法,好的学习方法可以事半功倍。在2022考研的考生们开始第一轮复习备考计划之际,华慧考研带各位小伙伴来熟悉一下2022考研数学复习:五个导数重点解析,一起来学习吧!

    第一,导数定义相关计算。这里有几种题型:1)已知某点处导数存在,计算极限,这需要掌握导数的广义化形式,还要注意是在这一点处导数存在的前提下,否则是不一定成立的。

    第二,导数、可微与连续的关系。函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的,相信这一点大家都很清楚,而我要提醒大家的是可导推连续的逆否命题:函数在一点处不连续,则在一点处不可导。这也常常应用在做题中。

    第三,理解并牢记导数定义。导数定义是考研数学的出题点,大部分以选择题的形式出题,01年数一考一道选题,考查在一点处可导的充要条件,这个并不会直接教材上的导数充要条件,他是变换形式后的,这就需要同学们真正理解导数的定义,要记住几个关键点:

    1)在某点的领域范围内。

    2)趋近于这一点时极限存在,极限存在就要保证左右极限都存在,这一点至关重要,也是01年数一考查的点,我们要从四个选项中找出表示左导数和右导数都存在且相等的选项。

    3)导数定义中一定要出现这一点的函数值,如果已知告诉等于零,那极限表达式中就可以不出现,否就不能推出在这一点可导,请同学们记清楚了。

    4)掌握导数定义的不同书写形式。

    第四,导数的计算。导数的计算可以说在每一年的考研数学中都会涉及到,而且形式不一,考查的方法也不同。

    要能很好的掌握不同类型题,首先就需要我们把基本的导数计算弄明白:

    1)基本的求导公式。指数函数、对数函数、幂函数、三角函数和反三角函数这些基本的初等函数导数都是需要记住的,这也告诉我们在对函数变形到什么形式的时候就可以直接代公式,也为后面学习不定积分和定积分打基础。

    2)求导法则。求导法则这里无非是四则运算,复合函数求导和反函数求导,要求四则运算记住求导公式;复合函数要会写出它的复合过程,按照复合函数的求导法则一次求导就可以了,也是通过这个复合函数求导法则,我们可求出很多函数的导数;反函数求导法则为我们开辟了一条新路,建立函数与其反函数之间的导数关系,从而也使我们得到反三角函数求导公式,这些公式都将要列为基本导数公式,也要很好的理解并掌握反函数的求导思路,在13年数二的考试中相应的考过,请同学们注意。

    3)常见考试类型的求导。通常在考研中出现四种类型:幂指函数、隐函数、参数方程和抽象函数。这四种类型的求导方法要熟悉,并且可以解决他们之间的综合题,有时候也会与变现积分求导结合,94年,96年,08年和10年都查了参数方程和变现积分综合的题目。

    第五,高阶导数计算。高阶导数的计算在历年考试出现过,比如03年,07年,10年,都以填空题考查的,00年是一道解答题。需要同学们记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。这里还有一种题型就是结合莱布尼茨公式求高阶导数的,00年出的题目就是考察的这两个知识点。

    考研英语线上培训班哪个好?当然选【华慧考研】!这里有海量考研真题资料、配套的考研英语辅导书,更有专门的辅导老师一对一辅导,让你研途不再迷茫!点击下方图片链接了解详情,也可联系客服,在线为您答疑~

考研英语专业辅导
辅导课程
考博精品辅导课程 课程简介 课时 学习费用 免费试听 立即报名
考博英语VIP通关班 全程1对1专家辅导、报名即签协议、赠送全套复习资料 200课时 5980元
考博英语协议通关班 所有的专项;名师课程,详细讲解专项的解题思路、方法和技巧。 200课时 3980元
考博英语系统全程班 所有专项+冲刺班课程 名师授课 随报随学 200课时 1880元
医学VIP通关班 全程1对1专家辅导、报名即签协议、赠送全套复习资料 200课时 5980元
医学系统全程班 医学统考所有专项+冲刺班、详细讲解各专项解题思路、方法和技巧 200课时 1880元
考博英语真题班 10年跟踪研究真题、呕心沥血之作、北大 清华 中科院 社科院 医学 复旦 华科 湖北联考 30课时 780元
首页 关于华慧 联系我们 支付方式

服务热线:400-622-4468  北京华慧东方网络科技有限公司  版权所有  Copyright © 2014-2024

北京市房山区拱辰街道东关村良乡东路1号-15  www.b2cedu.com  京ICP备09021372号

京公网安备 11010502043647号